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Efficient Nonblocking Switching Networks 
for Interprocessor Communications 

in Multiprocessor Systems 
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Absfruct- The performance of a multiprocessor system de- 
pends heavily on its ability to provide conflict free paths among 
its processors. In this paper, we explore the possibility of us- 
ing a nonblocking network with O ( N  log N )  edges (crosspoints) 
to interconnect the processors of an N processor system. We 
combine Bassalygo and Pinsker's implicit design of strictly non- 
blocking networks with an explicit construction of expanders 
to obtain a strictly nonblocking network with -765.18N + 
352.8N log N edges and 2 + log(N/5) depth. We present an 
efficient parallel algorithm for routing connection requests on this 
network and implement it on three parallel processor topologies. 
The implementation on a parallel processor whose processing 
elements are interconnected as in the Bassalyg-Pinsker network 
requires O( N log N )  processing elements, O( N log N )  interpro- 
cessor links and it takes O(1ogN) steps to route any single 
connection request where each step involves a small number 
( ~ 7 2 )  of bit-level operations. A contracted or folded version of 
the same implementation reduces the processing element count 
to O ( N )  without increasing the link count or the routing time. 
Finally, we establish that the same algorithm takes O(10g3 N )  
steps on a perfect shuffle processor with O ( N )  processing ele- 
ments. These results improve the crosspoint, depth and routing 
time complexities of the previously reported strictly nonblocking 
networks. 

Index Terms-Bassalygo-Pinsker network, Clos network, Can- 
tor network, extensive graph, expander, parallel routing algo- 
rithm, strictly nonblocking network. 

I. INTRODUCTION 

HE PERFORMANCE of a multiprocessor system hinges T critically on the intercommunication ability of its proces- 
sors which is often impeded by the bandwidth of the network 
interconnecting them. The full crossbar network goes a long 
way to solve the bandwidth problem, but at the expense 
of O ( N 2 )  crosspoints for an N-processor system. What is 
desirable is a network which functions much like a crossbar but 
with fewer crosspoints. Such networks have been investigated 
extensively in communication switching and are commonly 
referred to as strictly nonblocking networks [3]. 

Formally, an N x N strictly nonblocking network is a 
directed acyclic graph with N source vertices, called in- 
puts, and N sink vertices called outputs such that, given 
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any idle input z and idle output y, the network always 
possesses a path from z to y which does not overlap with 
any of the already established paths between other inputs 
and outputs.' A number of strictly nonblocking networks 
comprising fewer than O ( N 2 )  crosspoints have been reported 
in the literature. The well known 3-stage Clos network [61 
provides a strictly nonblocking network with 0(2jN1+*) 
crosspoints and depth 2 j  + 1. Improved versions of Clos 
network due to Cantor [5] give a strictly nonblocking network 
with O(N1og"N) crosspoints, 2 < a 5 3, and O(1og"N) 
depth. Cantor also provided the first strictly nonblocking 
network with O(N log2 N) crosspoints and O(1og N) depth 
[5]. Subsequent to these efforts, Bassalygo and Pinsker [41, 
[2] obtained a strictly nonblocking network with O(N log N) 
crosspoints and O(1og N) depth. Nonetheless, unlike Clos and 
Cantor networks, Bassalygo and Pinsker's network relies on 
the existence of certain bipartite graphs with O ( N )  edges, 
called extensive graphs. This makes their network implicit or 
nonconstructive as they were only able to prove that such 
graphs exist without an actual construction. 

In this paper, we explore the possibility of explicitly 
constructing strictly nonblocking networks with O(N log N) 
crosspoints, O(1og N) depth and O(1og N) routing time. Here, 
routing generically refers to setting and abolishing paths 
between the idle inputs and idle outputs of a nonblocking 
network. We differentiate between two specific routing 
problems. The first routing problem deals with setting (or 
abolishing) a path between any idle (or busy) pair of inputs 
and outputs. The second routing problem deals with setting (or 
abolishing) paths between any two or more idle (or busy) pairs 
of inputs and outputs. We shall refer to these two problems 
as single routing assignment problem and multiple routing 
assignment problem, respectively. 

Two recent efforts on routing problems in nonblocking 
networks are worth mentioning here. In [l], Arora et al. 
reported a greedy algorithm for setting paths between single 
and multiple pairs of idle inputs and outputs in multi-Benes 
networks that encompass O(N log N) crosspoints and have 
O(1og N) depth. Even though multi-Benes networks meet our 
objective of constructing efficient nonblocking networks in 
order of complexity terms, the results reported in [l] have 

'It  should be emphasized that strictly nonblocking networks are more 
powerful than baseline, omega, Benes and other multistage networks in that 
the established connections in these networks never have to be rearranged or 
disrupted for new requests. 
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at least two drawbacks. First, multi-Benes networks require 
expanders with large expansion coefficients in order to have 
a small constant factor in their routing time complexity. It 
is stated in [ l ]  that one could generate expanders with large 
expansion coefficients randomly. However, this assumption 
makes multi-Benes networks nonconstructive or implicit in 
contrast to our requirement that the construction be explicit.2 
The second drawback is that the time complexity of the greedy 
routing algorithm described in [ 11 depends on two key design 
parameters, namely, the in-degree (or out-degree) of each 
switch node d, and loading factor L. This relation was not 
spelled out exactly in [l], but the authors pointed out that 
to reduce the routing time one need to increase L and d. 
In particular, they stated that, to achieve a routing time of 
100logN, the values of d and L should approximately be 
10 and 300, respectively. As we will see in Section 11-B, d 
and L also affect the constant in the crosspoint complexity of 
multi-Benes networks. More specifically, when d = 10 and 
L = 300 constructing a multi-Bene: network requires about 
240, O O O N  log N crosspoints. 

More recently, Lin and Pippenger [9] reported both deter- 
ministic and nondeterministic path selection algorithms for a 
strictly nonblocking network which resembles Cantor's net- 
work. Nonetheless this network exacts more than O ( N  log N )  
crosspoints. Moreover, it uses an O(10g' N)step path selec- 
tion algorithm, or at best, a nondeterministic path selection 
algorithm requiring O(log2 N )  steps. 

In this paper, these results are substantially improved. 
We provide a strictly nonblocking network construction with 
-756.18N + 352.8NlogN crosspoints and 2 + log(N/5) 
depth by combining an explicit expander construction of Galil, 
Alon and Milman [ 121 with the strictly nonblocking network 
introduced by Bassalygo and Pinsker [4]. We present O(1og N )  
bit-step parallel algorithms to solve the single routing as- 
signment problem for both setting and abolishing paths and 
the multiple assignment problem for abolishing paths on this 
new nonblocking network. Our algorithms can also be used 
to establish paths for multiple assignments but, at present, 
this requires O(k1ogN) bit-steps where IC is the number of 
requests ((input, output) pairs) in the assignment. We realize 
our algorithms on a number of parallel processors consisting 
of O ( N )  to O ( N  log N )  processors and encompassing O ( N )  
to O ( N  log N )  communication links. The implementation 
on a parallel processor whose processing elements are in- 
terconnected as in the Bassalygo-Pinsker network requires 
O ( N  log N )  processing elements, O ( N  log N )  interprocessor 
links and it takes O(1ogN) bit-steps to route any single 
connection request where each step involves a small number 
( ~ 7 2 )  of bit-level operations. A contracted version of the same 
implementation reduces the processing element count to O( N )  
without increasing the link count or the routing time. Finally, 
we establish that the same algorithm takes O(10g3 N )  bit-steps 
on a perfect shuffle processor with O ( N )  processing elements. 

'It is possible to explicitly construct multi-Bene3 networks by realizing the 
splitters in these networks in terms of explicit constructions of expanders. 
Nonetheless, [ I ]  did not provide an analysis of the routing time complexity 
of multi-Bene3 networks for such a realization. 

The rest of the paper is organized as follows. Section I1 
gives the definitions used in the paper and provides an ex- 
plicit construction of the Bassalygo-Pinsker network. Section 
I11 describes the path-setting and path-abolishing algorithms. 
Section IV describes how these algorithms are implemented on 
a number of parallel processors, and the paper is concluded 
in Section V. 

11. BASIC FACTS 

In the first part of this section, we restate some definitions 
and facts mostly from [4] which will be used throughout the 
paper. In the second part we obtain an explicit construction 
of extensive graphs that are the building blocks of Bassalygo- 
Pinsker nonblocking  network^.^ 

A. Dejinitions and Previous Results 

Dejinition 1: Let G = ( A ,  B,  E )  be a bipartite graph with 
sets of vertices A, B and a set of edges E. The vertices in A 
are called the inputs of G and the vertices in B are called the 
outputs of G. A vertex y in B is called a neighbor of a vertex 
2 in A if ( 2 , ~ )  E E.  Graph G is said to be d-homogeneous 
if each vertex in A is joined to exactly d neighbors in B. 

Definition 2: Let G = ( A ,  B,  E )  be a bipartite graph, r (X)  
denote the set of neighbors of a set of inputs X C A ,  and 
c be a positive number. G is called an (n ,  d ,  e)-expander if 
(AI = IBI = n, the degree of every vertex in G is d ,  and if 
Ir(X)l > (1 + c( l  - F) ) lXl ,  for every set X g A ,  where 

Definition 3: G = ( A ,  B,  E )  is called an (m,r ,  a ,@)-  
extensive graph if [AI = m, IBI = r,  and if II'(X)l > Pr 
for every set X & A such that 1x1 = am, where a and p 
are some positive fractions (i.e., 0 < a,P < 1) independent 
of m and r. 

Definition 4: An Fa,m network is a directed acyclic graph 
with m inputs and a m  outputs satisfying the following condi- 
tion: For any number r ( r  < m) of paths already established 
between the m inputs and the am outputs, any one of the 
remaining idle inputs can be connected to at least 1-1 
of the remaining idle outputs. 

Lemma 1-(Bassalygo-Pinsker): An F a 3 k m  network can be 
constructed as shown in Fig. 1 by ( i )  cascading an Fa,m net- 
work with an ( a m ,  kam,  a ,  @)-extensive graph, ( i i )  replicating 
the cascade k times, and (iii) joining together the ith outputs of 
the k cascades, 1 5 i 5 k a m ,  a = (a - l ) /2a ,  p = ( a+ l ) /2a  
and a + @ = 1. 

We prove this lemma as the proof provides an insight into 
the construction of an F a , k ,  n e t ~ o r k . ~  

Proof: The lemma is proved by induction. The basis of 
induction is a [ (a t  + t ) / 2 ]  -homogeneous bipartite graph with 
t inputs and a t  outputs. In this case, given r established paths, 
each idle input can be connected to 

5 1/2. 

3The reader who is sufficiently familiar with [4] may skip Section 11-A. 
41t is worth noting that this lemma was stated without a proof in [4]. 
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) kam 

am A/ 
Fig. 1 .  
inputs and kam outputs.) 

An iterative construction of Fa,km network. (The network has km 

idle outputs since T 5 t- 1. Therefore, the first stage is an Fa,t 
network. Now consider the Fa,km network in Fig. 1. Let the 
Fa,m networks be numbered 1 ,2 , .  . . , k ,  the ( a m ,  kam,  a ,  @)- 
extensive graphs also be numbered 1 , 2, . . . , k and suppose that 
there are T;  established paths within the ith Fa,m network and 
E:=, T;  = T .  Without loss ofgenerality, assume that there is at 
least one idle input in the first Fa,m network so that 0 5 T I  5 
m- 1 and 0 5 ~i 5 k m -  1. Let z denote this idle input. 
By the definition of an Fa,+ network, z can be connected to 
[""-,""1 2 outputs of the first Fa,m network, 
which are also the inputs of the first (am,  kam,  a ,  @-extensive 
graph. The ( a m ,  kam,  a ,  @)-extensive graph guarantees that 
every aam = a" of its inputs are connected to at 

[ am-;+2 1 outputs of the first Fa,m network can be connected 
to at least r kam$km] outputs of the first (am,  kam,  a ,  @)- 
extensive graph. Since the number of established paths is at 
most T ,  the idle input z can therefore be connected to at 
least [kam$kml - T = rkamZr+l  + -1 idle outputs. 
Because 0 5 T 5 km - 1, it follows that z can be connected 
to at least [(kamzr+l) l  idle outputs. Therefore, by Definition 

0 
The following theorem gives a strictly nonblocking network 

in terms of two  fa,^ networks. 
Theorem (Bassalygo-Pinsker): Let G be a network ob- 

tained by tieing two  fa,^ networks back-to-back as shown 
in Fig. 2. G is an N-input strictly nonblocking network. 

Proof: Consider the vertices in-between the two  fa,^ 
networks. Given T connections between any T inputs and any T 

outputs, each idle input on the left can reach at least aN;T+l of 
these vertices, and each idle output on the right can also reach 

at least one of these vertices can be reached by both the idle 
input and idle output, and thus the statement follows. U 

The two-stage construction of the Fa,km network in Fig. 1 
can be applied iteratively to obtain an ( s  + 1) stage Fa,kst 

least Pkam = = kam $ km of its outputs. So, the 

4, the construction in Fig. 1 is an Fa,km network. 

a N - r  + 1 of these vertices. Since aN;r+l + > UN -T ,  

0 
1 

Inputs 

N. 

Reverse 
0 
1 

outputs 

N-1 

Fig. 2. A nonblocking network constructed with  fa,^ networks. 

network for any s 2 1. Stage 0 of an Fa,kat network consists 
of k" [at + t/2]-homogeneous bipartite graphs, each with t 
inputs and a t  outputs. Stage 1 consists of k" (at, kat, a ,  @)- 
extensive graphs, stage 2 consists of ICs-' (kat, k'at, a ,  @)- 
extensive graphs, and, in general, stage i consists of ksPi+' 
(/&'at, k i d ,  a,  @)-extensive graphs, where a and @ are fixed 
as in Lemma 1. To complete the design of the Fa,kst network, 
Bassalygo and Pinsker showed that there exist bipartite 6- 
homogeneous (ki-'at, kzat, a ,  P)-extensive graphs where 6 
is given by 

and H ( . )  is the binary entropy function, i.e., H ( z )  = 

It is easy to see that the F a p t  network constructed this 
way has kSt inputs and akSt outputs. Furthermore, summing 
the number of edges in the homogeneous graphs in stage 0 and 
the extensive graphs in all the remaining stages, the number 
of edges in the F a p t  network is found to be 

-z logz  - (1 - z ) l o g ( l -  z),O < 5 < 1. 

S 

kSt[(at + t)/21 + 6ki-latkS-Z+l 

(3) 

(4) 

= N[(at  + t)/21 - -(logt)N a6 + -NlogN U 6  ( 5 )  log IC log k 
where N = tk".  

Even though this result does not lead to an explicit con- 
struction of an Fa,kst network (as it relies on the existence of 
extensive graphs), it can be used to upper bound the number of 
edges in such a network. In particular, Bassalygo and Pinsker 
fixed k = 4, a = 50/17, t = 17 a = (a - 1)/2a = 0.33, 
and P = (a + l ) /2a = 0.67 to show that there exists a 
((50)42-l, (50)4;, 0.33,0.67)-extensive graph for each i ,  1 5 
i 5 logk(N/17). Each of these is a 23-homogeneous bipartite 
graph where 6 = 23 is worked out from (1). Substituting the 
values of k ,  a, and t in (4) and noting that N = (17)4", the 
number of edges in the F 5 0 / 1 7 , N  network is determined as 
134 * 17 * 4' + 1 1 5 0 ~ 4 ~ 1  = [67.65NlogNl. 

B. Explicit Construction of Extensive Graphs 

Bassalygo and Pinsker obtained an N-input strictly non- 
blocking network with 136N log, N edges by cascading two 
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m m 

B 1 
Fig. 3. 
network has u t  inputs and knt  outputs.) 

Explicit construction of an (m. k in .  0.  j)-extensive graph. (The 

F50/17,1v networks back-to-back, where each F50,17,1v net- 
work consists of 1 + s  = 1 +log,(N/17) stages, and hence the 
two networks cascaded together have 2 f 2  log,(N/17) stages. 
While this network has O(N1ogN) edges and O(1ogN) 
stages, it is only an existential construction, since the extensive 
graphs used in its construction were shown only to exist but 
not explicitly con~tructed.~ In order to convert this network 
to an explicit form, we first obtain an explicit construction 
of Bassalygo and Pinsker's extensive graphs by using the 
following lemma. 

Lemma 2: Let G = ( A .  B ,  E )  be a graph obtained by 
joining together the ith inputs of k (m. d, c)-expanders, 1 5 
i 5 m,, as shown in Fig. 3. G is an (m,  km, a ,  P)-extensive 
graph, where 0 5 a 5 1/2 and 0 5 p 5 a ( 1  + c(1 - a)).  

Proofi Let X C A where 1x1 = am 5 m/2. The 
inputs in X can be joined to (1  + c(1 - a)) lXI  outputs of 
each of the (7n,d,c)-expanders and thus can be joined to 

This implies that the inputs in X can be joined to p k m  
outputs of G for any [j 5 ( ~ ( 1  + c ( l  - a ) ) .  Therefore, G 
is an (m. km, a ,  P)-extensive graph with 0 5 a 5 l / 2  and 

0 
Remark: It is noted that the degree of each input of G 

is kd (each input in A is connected to d outputs in each 
(nr. d ,  c)-expander), and the degree of each output of G is d. 
In Fig. 3, the lines that connect the inputs in A to the inputs of 
the (m. d,  e)-expanders do not represent edges; they are used 
merely to identify the connections between the inputs in A 
and the inputs of the expanders. 

The main point of this lemma is that an (vi. km. a ,  p)- 
extensive graph can be constructed by using k ( v i , d , c ) -  
expanders. In the context of Lemma 1, this amounts to 
replacing each of the ( k z - l a t ,  k i d .  a.  p)-extensive graphs 
in the ith stage of the F,.X network, by k (ki-lat ,d,c)-  
expanders subject to the following conditions: 
i) [I 5 t r (1  + c(1 - a ) ) ,  (from Lemma 2)  

ii) cy 5 1/2 (from Definition 2)  
iii) a + p = 1 (from Lemma 1) 
Combining i) and iii) gives c 2 a. Recalling from 
Lemma 1 that N = (a - 1)/(2a),  ii) holds for any a > 1. 
Hence the above three conditions amount to the inequality: 

k(1 + ~ ( l  - N ) ) C Y ~  = ~ ( 1  + ~ ( l  - a))kvi outputs of G. 

0 5 p 5 a(1 + c(1 - a ) ) .  

'The constant factor in the .\-log A\- expression was subsequently reduced 
to 53.4 in [2] by refining the notion of extensive graphs and choosing the 
values of the parameters more judiciously. 

2 ( 1 - 2 a )  - - a 2 - 1 ,  where a > 1. By solving this inequality 

for a, we obtain a 2 *. Hence, obtaining an (m, 
km, e, %)-extensive giaph by Lemma 2 requires that 
a 2 ELYLCZ, w e  set amin = *. 

Now returning to (5 ) ,  we note that the factor in front of the 
N l o g N  term is given by & or e since the extensive 
graphs used in the Bassalygo-Pinsker network have degree 
6 = d k .  Since N l o g N  is the highest order term in ( 5 ) ,  we 
seek to minimize e N l o g N  with respect to a,  d and k ,  
and subject to the constraint that a 2 F. An additional 
constraint also imposed on a and k is that k"'at and k'aaf, 1 5 
i 5 logk(N/t), be both squares since all explicit constructions 
of (m, d ,  k)-expanders reported in the literature that we know 
of have a square number of inputs. This implies that k and at 
must both be squares. Under these conditions, it is obvious 
that k = 4 minimizes g N l o g  N .  As for amln, Fig. 4 
shows that its value increases as c decreases. While we do not 
know of a close form relation between d and c,  most explicit 
constructions of (m, d. c)-expanders suggest that d increases 
with increasing c as seen in Table I. Among these expanders, 
Galil et al.'s (7n, 9.0.449)-expander with c = 0.412, d = 9 
and a = 9.8 yields the minimum value for resulting 
in 3 N log N = 352.8N log N  edges. Using two copies of 
Fg 8.N networks and invoking (5) with a = 9.8. d = 9, k = 4 
and t = 5 then gives a nonblocking network with r54N + 
7O5.6Nlog4(N/5)1 = r-765.18N + 352.8N log N ]  edges 
and 2 + 2 log, ( N / 5 )  = 2 + log( N / 5 )  stages. Table I1 compares 
the edge-count and number of stages of this network with 
previously known nonblocking networks. It is seen that the 
edge-complexity of this network is about seven times higher 
than the edge-complexity of Bassalygo-Pinsker's nonblocking 
network construction, while they almost have the same depth. 
However, as it is already noted, the latter construction is not 
explicit, but it only points out the existence of a network with 
the edge and depth complexities stated in the table. As for the 
other entries in the table, the first three networks all have a 
higher order edge-complexity than the network described here. 
The only other nonblocking network construction listed in the 
table with O ( N  log N )  edges and O(1og N )  depth is the multi- 
Benes network [l], but the constant in its edge complexity 
is much larger than the constant that appears in the edge 
complexity of our network.6 

111. SETTING AND ABOLISHING PATHS 

In this section we present parallel algorithms to set a 
path between any pair of idle inputs and idle outputs, and 
abolish paths between any number of pairs of busy inputs and 

6The constant 240 000 in the edge complexity of the multi-Benes network 
is worked out from an informal remark in the second paragraph of the 
second column in [ I ,  p. 1561. The paper does not provide an expression 
for either the edge complexity or the depth of the network. We inferred from 
its description that it has 8d2LSlog ,V edges and 2(logAVL) + 1 stages 
where d is the in-degree (and out-degree) of the switches in the network 
and L is the loading factor. They together determine the routing time of the 
network. The authors stated that choosing d < 10 and L < 300 leads to a 
routing time of 100 log Z, and since no lower bound were given for d and 
L ,  this implies that the requisite multi-Benes network could have as many as 
8 * l o2  * 300 * AV lop, -1- = 240. OOOAYlog S edges. 
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24 

0 
0 . 1  C 2 

Fig. 4. Values of ami,, with respect to c. 

TABLE I 
VARIOUS EXPANDERS AND THEIR DEGREES AND EXPANSION COEFFICIENTS 

4 9 ' 4 '  

Expander Degree (4 ~~~~ (c)  amin 

Margulis [lo] 5 Not known Not known 
Gabber & Galil [7] 5 ( 2  - &)/4 59.7 

Gabber & Galil [7] I ( 2  - &)/2 29.9 
Galil et al. [12] 9 0.412 9.8 
Galil et al. [12] 13 0.465 8.7 
C. Y. Lee [8] 33 0.868 4.8 

TABLE I1 
COST AND DEFTH OF VARIOUS NONBLOCKING NETWORKS 

Network cost Depth 
Clos-Cantor [5] N log"N, 2 < a 5 3 loga N ,  2 < a 5 3 
Cantor [5] O(Nlog2 N) 2 log(N + 2 )  - 1 
fippenger Lin 191 O ( N I O ~ ~  N )  2 log N + log log N )  - 3 
Multi-Bene5 [I] 240OOONlogN+O(N) 2(log300N) + 1 
Bassalygo & Pinsker 53.4N log N + O ( N )  
P I  

2 + log(N/17) 

This paper's network 352.8Nlog N + O ( N )  2 + log(N/5)  

outputs in a Bassalygo-Pinsker network. In the description 
of these algorithms, we will combine the extensive graphs 
whose outputs are merged together in each stage of the 
F 9 . 8 , ~  network into a single bipartite graph of degree dk as 
illustrated in Fig. 5 for t = 5,a = 9.8, and IC = 4. This 
simplifies the representation of the F 9 . 8 , ~  network without 
altering its structure. We further illustrate the construction 
of a nonblocking BassalygcbPinsker network in Fig. 6 for 
N = 80, t = 5, a = 9.8, and IC = 4. This network comprises 
three different types of graphs. The trapezoidal boxes marked 
with B1 are 5-input, 49-output, 27-homogeneous graphs, the 
rectangular boxes marked with Bz are merged blocks of four 
(49, 196, 0.449, 0.55 1)-extensive graphs and the rectangular 
boxes marked with B3 represent merged blocks of four (196, 
784, 0.449, 0.55 1)-extensive graphs. 

The single assignment routing problem for a Bassalygo- 
Pinsker network includes two main tasks: setting paths and 
abolishing paths. First, we formalize the path-setting problem. 
Let x be an idle input which requests to be connected to 
an idle output, say y. A free path between x and y (a path 
between x and y comprising unused switching vertices) will 
be established by traversing the left and right F a p  networks 
separately. That is, traversals from x to the idle outputs of the 
left  fa,^ network will be combined with the traversals from 
y to the idle inputs of the right  fa,^ network to determine the 
free paths between z and y. 

Fig. 5. Restructured F9,8,s*4~ network. 

stage0- stage 1 (N stage 2 stage 2 .- stage 1 ,stage 0 

Fig. 6. 80-input Bassalygo-Pinsker network. 

The path abolishing problem (single routing assignment 
version) for a Bassalygo-Pinsker network is concerned with 
dismantling an established path between a busy input and 
its busy output pair. The paths between inputs and outputs 
must be abolished after the transactions between them are over 
because leaving the edges on these paths busy invalidates the 
nonblocking property of a Bassalygo Pinsker network (any 
nonblocking network for that matter). We also note that the 
paths that need to be abolished never overlap, and hence 
they can be abolished in parallel without any additional time 
penalty. 
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A. Path Representation 

We will represent the paths between the inputs and outputs 
of each F u , ~  network in terms of sequences of vertices 
where each vertex identifies an (output, input) pair (i.e., a link 
between two consecutive stages) of the network. This can be 
viewed as collapsing the outputs of each stage with the inputs 
of the succeeding stage without altering their original ordering. 
We denote the ith vertex between the j - lth stage and j th 
stage by ( i , j )  and call ( i , j )  the ID of this vertex, 0 5 i 5 U N  
and 1 5 j 5 log,(N/t). In particular, ( i , 0 ) . 0  5 i 5 U N  - 1, 
denote the input vertices and ( i ,  1 + log,(N/t)), 0 5 i 5 
U N  - 1, denote the output vertices. 

A vertex in an F U p  network is said to be occupied if it 
falls on a path established between a busy input and a busy 
output; it is called unoccupied otherwise. The status of the 
vertices in an N-input  fa,^ network with parameters a, t ,  d 
and k will be represented by an U N  x (2 + log,(N/t)) status 
matrix P. where each entry P[i ,  j ]  is a triplet ( p i , J ,  b i , j ,  Si,j), 
0 5 i 5 aN, 0 5 j 5 1 + log,(N/t), and7 
i) pi.j is a location to store the ID of one of the neighbors 

of vertex ( i , j ) ;  
ii) bi,j is a binary variable which represents the status of 

vertex ( i , j )  (vertex ( i , j )  is occupied if bi,J = 1 and it 
is unoccupied if bi,j = 0); 

iii) Si,j is a dlc-element vector, where S,,j[r] contains the ID 
of the rth successor of vertex ( i , j ) ,  1 5 r 5 dk .  

For an F u , ~  network with fixed parameters a, t ,  d and IC, 
the entries in Si,j are fixed by the structure of the specific 
extensive graph that is used to construct that network. The 
value of bi,j is updated after each request to establish a path 
or each request to abolish a path has been completed. Thus, 
Si,j and b i , j ,  0 5 i 5 U N ,  0 5 j 5 1 + log,(N/t) collectively 
represent the current state of the F u , ~  network. 

B. Path-Setting Algorithm 

Given an idle input (Iz1 0) of the left F u , ~  network and an 
idle output (Iy, 0) of the right  fa,^ network (equivalently, an 
idle input-output pair of the entire network containing the left 
and right  fa,^ networks), the path-setting algorithm consists 
of three phases: 1) path-claiming phase, 2) pivot-selection 
phase, and 3) path-tracing phase. Before the execution of 
these three phases, variables pi,j except ~ C L I = , O  and ~ I , , o ,  in 
all entries of the status matrices associated with the two F u , ~  
networks are initialized with an invalid vertex ID. 

I )  Path Claiming Phase: During the path-claiming phase, 
we mark all free paths between ( Iz , 0) and (I,, 0) which are 
vertex-disjoint with the already established paths in the two 
F u , ~  networks by linking the vertices along the free paths 
with the variables pi,j. This phase consists of (2 + log, ( N / t ) )  
steps for each  fa,^ network (one step for each value of j ) .  
During the j th step, each vertex ( i , j ) ,  0 5 i 5 UN-1 ,  with its 
variable pi,j containing a valid vertex ID in stage j of the F u , ~  
network broadcasts its ID to its dlc successors specified by 
variable Si,j. Each vertex ( i ,  j + l), 0 5 i 5 U N  - 1, in stage 

’Note that each Fa,,v network has only IV vertices in its input stage even 
though matrix P allocates a column of aAV entries for these vertices. This is 
done to simplify the notation in our discussion. 

Stage j Stage j+l Stage j-1 

. =(-l;l) 
n t 1  

Fig. 7. Demonstration of the j th  iteration of path-claiming phase 

j + 1 keeps only the ID of one of its predecessors, and stores 
it in variable pi,j+l if its variable bi,j+l = 0 (an unoccupied 
vertex) and discards all the ID’s from its predecessors if its 
variable bi,j+l = 1 (an occupied vertex). 

Fig. 7 illustrates these activities. Vertex ( i ,  j )  which has 
received the ID from vertex ( p ,  j -  1) in the last step broadcasts 
its ID to all its successors, i.e., vertices ( l , j  + l), ( lc , j  + 1) 
and (m , j  + 1). These vertices then store in the same step, 
this ID in pi, j+l,  p k , j + l  and pm,j+l if their corresponding 
variables bi,j+l, b,,j+l, b,,j+l are equal to 0. We note that 
vertex ( n , j  - 1) does not transmit its ID to vertex ( i , j )  as 
indicated by the dashed line because its variable pL, ,J - l  does 
not contain a valid ID. 

It follows that upon applying the path-claiming phase to 
the left F u , ~  network, all its idle output vertices that have 
free paths to the chosen idle input (Iz, 0) can be determined. 
Likewise, upon applying the same procedure to the right  fa,^ 
network, all its idle input vertices that have free paths to 
the chosen idle output (I,,O) can also be determined. It is 
noted that a vertex may have several successors as well as 
several predecessors. The path-claiming procedure assigns one 
predecessor to each vertex. 

2) Pivot Selection Phase: We call each idle vertex common 
to both the left and right F u , ~  networks a pivot vertex if it 
can be reached by a path from both input (Iz, 0) and output 
(Iy, 0) that is determined in the path claiming phase. That the 
Bassalygo-Pinsker network is nonblocking ensures that there 
exists at least one pivot vertex for any given idle input of the 
left F u , ~  network and any given idle output of the right FUp 
network. The pivot-selection phase uses a backward traversal 
from pivot vertices on the input side of the right F U p  network 
toward its output (Iy, 0) to locate a free path. This traversal 
takes 1 + logk(N/t) steps. More specifically, during step j ,  
0 5 j 5 log,(N/t), the vertices in stage 1 + log,(N/t) - j 
of the right F u , ~  network activated in the previous step send 
their ID’s to their neighbors as specified in p i , ~ + l O g k  ( ~ l ~ 1 - j .  

The vertices in stage 1 + log,(N/t) - j - 1 that receive 
any ID’S from stage 1 + log,(N/t) - j retain only one of 
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these ID’S and then the same step is repeated between the 
vertices in stage 1 + log,(N/t) - j - 1 and those in stage 
1 + logk(N/t) - j - 2 and so on. This phase generates a free 
path, (linked by variables pi , j )  between output ( I y , O )  of the 
right  fa,^ network and one of the pivot vertices on its input 
side. 

3) Path Tracing Phase: Once the pivot-selection phase is 
completed, all that remains to be done is to establish a free path 
by tracing it back from output vertex (I,, 0) through the pivot 
vertex in the center to the input vertex (I,, 0) of the combined 
network. This path tracing phase takes 2 + log,( N / t )  steps on 
each of the left and right  fa,^ networks. We start out with 
the right  fa,^ network and make the idle output (I,, 0) as the 
only marked vertex. In the j th  step, the marked vertex ( i , j )  
in stage j of the right  fa,^ network sets variable bi, j  = 1 to 
indicate that vertex ( 2 ,  j )  is occupied and transfers its ID to its 
neighbor specified by variable pi,j so that the edge between 
them is activated. The unique vertex in stage j + 1 which 
receives this vertex ID becomes the marked vertex in stage 
j + 1 for the following step. After 2 + log,(N/t) steps, a 
particular pivot vertex in the center stage is marked. The same 
process is then repeated for the left  fa,^ network for another 
2 + logk(N/t) steps starting with the chosen pivot vertex as 
marked vertex. At the end of this phase, a path is formed 
between (I,, 0) and (Iy, 0) and the request is served. 

C. Path-Abolishing Algorithm 

The algorithm to abolish a path is much simpler. Given 
a busy input (I , ,O) of the left  fa,^ network and a busy 
output ( I y r O )  of the right  fa,^ network, abolishing the 
path between them only takes one phase which consists of 
2 + logk(N/t) steps on each  fa,^ network. At the beginning 
of this algorithm, two vertices associated with input (I,, 0) 
and input (Iy, 0) are marked. In the jth step, marked vertex 
( 2 , j )  in stage j of the  fa,^ network checks its dk successors 
specified in the dk-element vector Si,j to see which one is 
occupied. It then sends out its ID to the occupied successor in 
stage j + 1. The successor vertex then becomes marked vertex 
in stage j + 1 and resets its busy variable to 0 to indicate that it 
is no longer occupied. The same step is now repeated in stage 
j + 1 and so on until all the edges on the path are marked 
free. At the end of this phase, the originally established path 
is abolished and the request is completed. As stated before, 
this algorithm can be extended to handle multiple requests at 
no additional time penalty since the busy paths are all disjoint 
and therefore can be abolished in parallel. 

Iv. REALIZATION AND PERFORMANCE 

In this section we discuss the implementation and perfor- 
mance of the path-setting and path-abolishing algorithms on 
parallel processors with three different topologies. The first 
two of these implementations are derived directly from the 
topology of the Bassalygo-Pinsker network and the third is 
based on the perfect shuffle network. 

A. Direct Realization 
In this case, all phases of the routing algorithm associated 

with the two  fa,^ networks presented in the previous section 

Left Fa.N Network Section Right F ~ . N  Network Section -- 

Fig. 8. A BassalygePinsker (BP)-processor, 

are mapped directly onto a parallel processor with 2 N  + 
2aN x log,(N/t) + U N  processors that are interconnected 
exactly the same way as the vertices are connected in the 
Bassalygo-Pinsker network.8 This is illustrated in Fig. 8 for the 
80-input Bassalygo-Pinsker network. The boxes marked with 
B1, B2 and B3 represent the interprocessor communication 
links that correspond to the links marked with the same labels 
in Fig. 6. We shall refer to this parallel processor realization 
as a BP-processor since its topology is patterned after the 
Bassalygo-Pinsker network. 

Each processor in a BP-processor except those associated 
with the input vertices and output vertices has 2dk com- 
munication links connecting it to its neighboring processors. 
Since d and IC are constants, the number of communication 
links for each processor is a constant and the total number of 
communication links is 

2dkN + 2dICaNlogk(N/t) = O(Nl0gN) .  (6) 

The path-setting algorithm described in the previous section 
can be realized on the BP-processor using either a centralized 
or a distributed processing scheme. In the centralized scheme, 
we assume that a master control unit initiates the various 
phases of the routing algorithm. To form a path, between an 
idle input z and an idle output y, the master control unit acti- 
vates the processor associated with input x and the processor 
associated with output y. Each of these two processors then 

8Note that each  fa,^ network has only N input vertices. Thus the first 
stage of the parallel processor for each  fa,^ network consists of only N 
processors and each of the remaining stages encompasses a N processors. 
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simultaneously initiates a path-claiming phase. Once the path- 
claiming phase is completed, the processors in the center stage 
invoke a pivot-selection phase. After this phase is completed, 
the processor associated with output y then invokes a path 
tracing phase. At the end of this phase, a path is formed 
between input II: and output y. 

In the distributed scheme, the request for a connection 
between an idle input and an idle output arrives directly at the 
processor associated with the idle input and this request must 
be transmitted to the processor associated with the idle output. 
This is accomplished by broadcasting the destination address 
of the idle output via its processor to the processors associated 
with all the idle outputs. The processor (associated with an 
idle output) whose destination address matches the broadcast 
address is then activated to initiate the three phases of the 
path-setting algorithm. These three phases are also carried out 
by the processor associated with the idle input. The rest of the 
realization proceeds as in the centralized scheme. 

It follows that all three phases of the path setting algorithm 
can be completed in 4 * ( 2  + logk(N/ t ) )  = O(1ogN) steps 
on a BP-processor under the centralized scheme and in 6 * 
( 2  + logk(N/ t ) )  = O(logN) steps under the distributed 
scheme. Similarly, it can be shown that the path abolishing 
algorithm can also be realized on the same parallel processor 
in 2 + logk(N/ t )  = O(logN) steps under the centralized 
scheme and 3 * ( 2  + l o g k ( N / t ) )  = O(1og N )  steps under the 
distributed scheme. 

B. Indirect Realizations 

The parallel processor realization just described can be 
simplified by combining some of the processors together and 
restructuring the communication links between them so as 
to maintain the connectivities in the original topology of 
the BP-processor. This can lead to a variety of realizations 
with centralized routing schemes for the Bassalygo-Pinsker 
network. One possibility is to combine the processors for 
the right F a p  network with the corresponding processors for 
the left F,,N network (see Fig. 9(a)). This results in halving 
the number of processors in the original topology. The path- 
claiming phase of the routing algorithm can be executed on 
this contracted BP-processor in a tandem fashion. 

A more radical contraction is achieved by collapsing all 
the processors into a single column of U N  processors (all 
processors in the same row are contracted into a single 
processor), and restructuring the communication links so that 
if any two processors have a direct communication link before 
the contraction, they have a direct communication link after 
the contraction as well. Fig. 9(b) depicts this contraction 
graphically. Suppose that the U N  processors in this realization 
are numbered 0 .1 ,2 , .  . . , aN - 1. Then row i of the status 
matrices associated with the two  fa,^ networks now resides 
in processor i .  After the contraction, each vertex in a stage 
of the BP-processor is connected to dlc successors in the 
succeeding stage. Therefore, each processor in the contracted 
BP-processor has d k ( 2  + log,(N/t)) communication links 
connecting it to the other processors. Thus, the contracted 
BP-processor consists of O ( N )  processors and a total of 
O ( N  log N )  communication links. 

Left Fa,N Network Section 

b 
Fig. 9. 
same number in (a) are collapsed into a single processor in (b). 

Two contractions of the BP-processor. Processors marked with the 

Now consider the execution of the path-setting algorithm 
on this contracted BP-processor. During the j th  step of the 
path-claiming phase, processor i, 0 5 i 5 U N  - 1, with its 
variable pi,j containing a valid ID broadcasts its ID to its dk  
neighboring processors specified by variable S ~ , J .  Processor 
i, 1 5 i 5 U N  stores any one of the ID’s it receives in 
pi,j+l if bi,J+l = 0 and discards all the ID’s if its variable 
b;,j+l = 1. After two path-claiming phases for the left and 
right  fa,^ networks, each processor knows whether or not it 
is a pivot vertex. During the j th step of the pivot-selection 
phase, the marked processor i transfers its ID to the processor 
specified by variable pi,j and then updates the pi,., with 
the ID it received during the last step. The processor which 
receives any valid ID’s then stores only one of these ID’s 
temporarily and becomes a marked processor for the next step. 
After 1 + log,(N/t) steps, a unique free path linked pi,j is 
found from one of the pivot vertices to the idle output pair. 
Combining this path with the paths found in the left F,,N 
network during the path-claiming phase, we trace back a free 
path from the idle output pair to the idle input. In the j th  step 
of the path-tracing phase for right  fa,^ network, the marked 
processor i sets variable bi, j  = 1 to indicate that vertex ( z , j )  
of the right F,,N network is occupied and transfers its ID to 
the processor specified by variable pi,j so that the specified 
processor can use this ID to activate the corresponding edge 
in the right  fa,^ network. The processor which receives this 
vertex ID then becomes a marked processor for the next step. 
The process for the left  fa,^ network is the same as the 
process of the right  fa.^ network. At the end of this phase, a 
free path is established and the request is completed. 
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It follows from the ongoing discussion that the path-setting 
algorithm can be implemented in 5 * ((2 + logk(N/t))) = 
O(1ogN) steps on the contracted BP-processor. The path- 
abolishing algorithm can similarly be implemented with a time 
complexity of 2 * (2 + logk(N/t)) = O(1ogN) steps. 

Now that the realization of the routing algorithm is reduced 
to data broadcasting on a single column of O ( N )  processors, 
the same algorithm can be realized on other parallel computers 
consisting of O ( N )  processors. In particular, we can realize 
this routing algorithm on a perfect shuffle processor using 
the data broadcast algorithm of Nassimi and Sahni [ l l ] .  
Consider a perfect shuffle processor with U N  processors, 
and suppose that processor P( i )  contains an index register 
W ( i )  and data register D(i) .  Nassimi and Sahni described an 
algorithm, called random access write (RAW) that broadcasts 
the contents of D(i)  in processor P(i )  to processor P(W(i ) ) ,  
0 5 i 5 U N  - 1. If two or more processors attempt to 
broadcast to the same processor, that is, if W(i1) = W(i2)  = 
... = W(i,) = i, then P ( i )  receives its data from P ( j ) ,  
where j = Minllklr{ik}. This algorithm takes O(log2 N )  
steps to execute on a perfect shuffle processor. The various 
phases of the routing algorithms described in Section 3 can 
be broken down into a sequence of steps each of which 
amounts to executing the Nassimi and Sahni’s data broadcast 
algorithm. To see this, consider the path-claiming phase of 
the path-setting algorithm. In the BP-processor realization, 
each processor within a stage broadcasts its own ID to its 
dk  successors in the next stage. On the receiving end, each 
processor keeps only one of the ID’s that reach it. This 
broadcasting of ID’s between the processors in consecutive 
stages can be performed by iterating the Nassimi and Sahni’s 
RAW algorithm dk  times, where, during each iteration, all 
active processors send their ID’s to one of their successors. 
Since each iteration takes O(log2 N )  steps and a total of 
dk iterations are needed to complete the broadcast of the 
ID’s for all active processors during each step of path- 
claiming algorithm and since the entire algorithm encompasses 
O(1og N )  steps, the path-claiming phase can be completed in 
O(log3N) steps on a perfect shuffle processor with O ( N )  
processors using Nassimi and Sahni’s algorithm. It should be 
noted that this realization increases the time complexity from 
O(1og N )  to O(10g3 N )  when compared to the fully-contracted 
BP-processor, but it only requires O ( N )  communication links 
as compared to O(N log N )  communication links for the fully- 
contracted BP-processor. 

The steps in both direct and indirect realizations of our 
algorithm involve broadcasting, updating vertex ID’s and 
checking binary variables. In Section 111-A, we stated that a 
switching vertex in a Bassalygo-Pinsker network will be given 
or assigned a pair ( i , j )  as its ID. For an N-input Bassalygo- 
Pinsker network this implies that the ID of each vertex takes 
up O(1ogN) bits, and hence broadcasting and updating ID’s 
would require 0 (log N )  bit-steps. Fortunately, the bit-level 
complexity of the steps in our algorithms can be reduced 
to 0 (1 )  by noting that each vertex in Bassalygo-Pinsker 
network has only 2dk neighbors and thus it suffices to use 
2log(dk) = 0(1) bits to identify the neighbors of a vertex. 
Therefore, broadcasting a vertex ID reduces to setting a single- 

TABLE 111 
PROCESSOR, TIME, AND LINK COMPLEXITIES OF VARIOUS PARALLEL 

PROCESSOR REALIZATIONS OF THE ROUTING ALGORITHM 

Realization No. of processors Execution time No. of Links 

Contracted O( N )  w o g  NI O( N log N )  
BP-processor 

processor 

BP-processor O( N log N )  U( log  N )  O( N log N )  

Perfect shuffle O ( N )  u(10g3 N )  O ( N )  

bit flag and identifying the neighbor that sets a single-bit flag 
reduces to encoding a log(&)-bit address which can be done in 
O(log2(dk)) = 0(1) bit-steps. Recalling that the three phases 
of the path-setting algorithm requires 4* (2+log4(N/5)) steps, 
the total bit-level time complexity of this algorithm will be 
z54 * [log(dk)12 * (2 + log,(N/t)) = 72 log N + 120.82 when 
d = 9, k = 4 and t = 5. 

V. CONCLUDING REMARKS 
In this paper, we first described a strictly nonblocking 

network with -765.18N + 352.8N log N crosspoints and 
2 + log(N/5) depth by combining Bassalygo and Pinsker’s 
implicit nonblocking network construction with Galil et al.’s 
expanders. We then presented algorithms to set and abolish 
paths on this network. For each new request each of these 
algorithms takes O(1ogN) steps, where each step involves 
broadcasting and checking a constant number of bits on 
a parallel processor with O( N log N )  processing elements 
interconnected by a topology that is identical to the Bas- 
salygo-Pinsker network. We also established that the same 
algorithms can be realized on an N-processor computer with 
O(N1ogN) communication links in O(1ogN) steps if the 
processing elements are interconnected by a contracted Bas- 
salygo-Pinsker network and in O(log3N) steps if they are 
interconnected by a perfect shuffle network. These results are 
summarized in Table 111. It is worth noting that the constants 
hidden in the routing time complexities are reasonably small 
( ~ 7 2 ) .  In contrast, the routing algorithm described in [ I ]  
achieves a constant factor of 100 but at the expense of a 
very large constant factor in the crosspoint complexity of the 
nonblocking network used (see Table 11). 

While these results are rewarding, it will be worthwhile to 
further reduce the constant 352.8 in the crosspoint expression 
of the nonblocking network described in the paper. This would 
require new constructions of expanders with lower densities 
and larger expansion coefficients. Another direction for further 
research is to extend the path setting algorithm of this paper to 
handle multiple connection assignments. Such assignments can 
be handled by iteratively applying the algorithm given in this 
paper, but this is likely to lead to excessive routing time when 
the number of requests gets very large. These problems and 
other related questions will be dealt with in detail elsewhere. 
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