
132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

Efficient Nonblocking Switching Networks
for Interprocessor Communications

in Multiprocessor Systems
Fong-Chih Shao and A. Yavuz Onq, Senior Member, IEEE

Absfruct- The performance of a multiprocessor system de-
pends heavily on its ability to provide conflict free paths among
its processors. In this paper, we explore the possibility of us-
ing a nonblocking network with O (N log N) edges (crosspoints)
to interconnect the processors of an N processor system. We
combine Bassalygo and Pinsker's implicit design of strictly non-
blocking networks with an explicit construction of expanders
to obtain a strictly nonblocking network with -765.18N +
352.8N log N edges and 2 + log(N/5) depth. We present an
efficient parallel algorithm for routing connection requests on this
network and implement it on three parallel processor topologies.
The implementation on a parallel processor whose processing
elements are interconnected as in the Bassalyg-Pinsker network
requires O(N log N) processing elements, O(N log N) interpro-
cessor links and it takes O(1ogN) steps to route any single
connection request where each step involves a small number
(~ 7 2) of bit-level operations. A contracted or folded version of
the same implementation reduces the processing element count
to O (N) without increasing the link count or the routing time.
Finally, we establish that the same algorithm takes O(10g3 N)
steps on a perfect shuffle processor with O (N) processing ele-
ments. These results improve the crosspoint, depth and routing
time complexities of the previously reported strictly nonblocking
networks.

Index Terms-Bassalygo-Pinsker network, Clos network, Can-
tor network, extensive graph, expander, parallel routing algo-
rithm, strictly nonblocking network.

I. INTRODUCTION

HE PERFORMANCE of a multiprocessor system hinges T critically on the intercommunication ability of its proces-
sors which is often impeded by the bandwidth of the network
interconnecting them. The full crossbar network goes a long
way to solve the bandwidth problem, but at the expense
of O (N 2) crosspoints for an N-processor system. What is
desirable is a network which functions much like a crossbar but
with fewer crosspoints. Such networks have been investigated
extensively in communication switching and are commonly
referred to as strictly nonblocking networks [3].

Formally, an N x N strictly nonblocking network is a
directed acyclic graph with N source vertices, called in-
puts, and N sink vertices called outputs such that, given

Manuscript received March 8, 1994; revised July 5 , 1994. This work was
supported in part by the Graduate Studies and Research Board at the University
of Maryland.

The authors are with the Department of Electrical Engineering and the
Institute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742 USA.

IEEE Log Number 9406349.

any idle input z and idle output y, the network always
possesses a path from z to y which does not overlap with
any of the already established paths between other inputs
and outputs.' A number of strictly nonblocking networks
comprising fewer than O (N 2) crosspoints have been reported
in the literature. The well known 3-stage Clos network [61
provides a strictly nonblocking network with 0(2jN1+*)
crosspoints and depth 2 j + 1. Improved versions of Clos
network due to Cantor [5] give a strictly nonblocking network
with O(N1og"N) crosspoints, 2 < a 5 3, and O(1og"N)
depth. Cantor also provided the first strictly nonblocking
network with O(N log2 N) crosspoints and O(1og N) depth
[5]. Subsequent to these efforts, Bassalygo and Pinsker [41,
[2] obtained a strictly nonblocking network with O(N log N)
crosspoints and O(1og N) depth. Nonetheless, unlike Clos and
Cantor networks, Bassalygo and Pinsker's network relies on
the existence of certain bipartite graphs with O (N) edges,
called extensive graphs. This makes their network implicit or
nonconstructive as they were only able to prove that such
graphs exist without an actual construction.

In this paper, we explore the possibility of explicitly
constructing strictly nonblocking networks with O(N log N)
crosspoints, O(1og N) depth and O(1og N) routing time. Here,
routing generically refers to setting and abolishing paths
between the idle inputs and idle outputs of a nonblocking
network. We differentiate between two specific routing
problems. The first routing problem deals with setting (or
abolishing) a path between any idle (or busy) pair of inputs
and outputs. The second routing problem deals with setting (or
abolishing) paths between any two or more idle (or busy) pairs
of inputs and outputs. We shall refer to these two problems
as single routing assignment problem and multiple routing
assignment problem, respectively.

Two recent efforts on routing problems in nonblocking
networks are worth mentioning here. In [l], Arora et al.
reported a greedy algorithm for setting paths between single
and multiple pairs of idle inputs and outputs in multi-Benes
networks that encompass O(N log N) crosspoints and have
O(1og N) depth. Even though multi-Benes networks meet our
objective of constructing efficient nonblocking networks in
order of complexity terms, the results reported in [l] have

'It should be emphasized that strictly nonblocking networks are more
powerful than baseline, omega, Benes and other multistage networks in that
the established connections in these networks never have to be rearranged or
disrupted for new requests.

1045-9219/95$04.00 0 1995 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

SHAO AND ORUC: EFFICIENT NONBLOCKING SWITCHING NETWORKS 133

at least two drawbacks. First, multi-Benes networks require
expanders with large expansion coefficients in order to have
a small constant factor in their routing time complexity. It
is stated in [l] that one could generate expanders with large
expansion coefficients randomly. However, this assumption
makes multi-Benes networks nonconstructive or implicit in
contrast to our requirement that the construction be explicit.2
The second drawback is that the time complexity of the greedy
routing algorithm described in [11 depends on two key design
parameters, namely, the in-degree (or out-degree) of each
switch node d, and loading factor L. This relation was not
spelled out exactly in [l], but the authors pointed out that
to reduce the routing time one need to increase L and d.
In particular, they stated that, to achieve a routing time of
100logN, the values of d and L should approximately be
10 and 300, respectively. As we will see in Section 11-B, d
and L also affect the constant in the crosspoint complexity of
multi-Benes networks. More specifically, when d = 10 and
L = 300 constructing a multi-Bene: network requires about
240, O O O N log N crosspoints.

More recently, Lin and Pippenger [9] reported both deter-
ministic and nondeterministic path selection algorithms for a
strictly nonblocking network which resembles Cantor's net-
work. Nonetheless this network exacts more than O (N log N)
crosspoints. Moreover, it uses an O(10g' N)step path selec-
tion algorithm, or at best, a nondeterministic path selection
algorithm requiring O(log2 N) steps.

In this paper, these results are substantially improved.
We provide a strictly nonblocking network construction with
-756.18N + 352.8NlogN crosspoints and 2 + log(N/5)
depth by combining an explicit expander construction of Galil,
Alon and Milman [121 with the strictly nonblocking network
introduced by Bassalygo and Pinsker [4]. We present O(1og N)
bit-step parallel algorithms to solve the single routing as-
signment problem for both setting and abolishing paths and
the multiple assignment problem for abolishing paths on this
new nonblocking network. Our algorithms can also be used
to establish paths for multiple assignments but, at present,
this requires O(k1ogN) bit-steps where IC is the number of
requests ((input, output) pairs) in the assignment. We realize
our algorithms on a number of parallel processors consisting
of O (N) to O (N log N) processors and encompassing O (N)
to O (N log N) communication links. The implementation
on a parallel processor whose processing elements are in-
terconnected as in the Bassalygo-Pinsker network requires
O (N log N) processing elements, O (N log N) interprocessor
links and it takes O(1ogN) bit-steps to route any single
connection request where each step involves a small number
(~ 7 2) of bit-level operations. A contracted version of the same
implementation reduces the processing element count to O(N)
without increasing the link count or the routing time. Finally,
we establish that the same algorithm takes O(10g3 N) bit-steps
on a perfect shuffle processor with O (N) processing elements.

'It is possible to explicitly construct multi-Bene3 networks by realizing the
splitters in these networks in terms of explicit constructions of expanders.
Nonetheless, [I] did not provide an analysis of the routing time complexity
of multi-Bene3 networks for such a realization.

The rest of the paper is organized as follows. Section I1
gives the definitions used in the paper and provides an ex-
plicit construction of the Bassalygo-Pinsker network. Section
I11 describes the path-setting and path-abolishing algorithms.
Section IV describes how these algorithms are implemented on
a number of parallel processors, and the paper is concluded
in Section V.

11. BASIC FACTS

In the first part of this section, we restate some definitions
and facts mostly from [4] which will be used throughout the
paper. In the second part we obtain an explicit construction
of extensive graphs that are the building blocks of Bassalygo-
Pinsker nonblocking network^.^

A. Dejinitions and Previous Results

Dejinition 1: Let G = (A , B, E) be a bipartite graph with
sets of vertices A, B and a set of edges E. The vertices in A
are called the inputs of G and the vertices in B are called the
outputs of G. A vertex y in B is called a neighbor of a vertex
2 in A if (2 , ~) E E. Graph G is said to be d-homogeneous
if each vertex in A is joined to exactly d neighbors in B.

Definition 2: Let G = (A , B, E) be a bipartite graph, r (X)
denote the set of neighbors of a set of inputs X C A , and
c be a positive number. G is called an (n , d , e)-expander if
(AI = IBI = n, the degree of every vertex in G is d , and if
Ir(X)l > (1 + c(l - F)) lXl , for every set X g A , where

Definition 3: G = (A , B, E) is called an (m,r , a ,@)-
extensive graph if [AI = m, IBI = r, and if II'(X)l > Pr
for every set X & A such that 1x1 = am, where a and p
are some positive fractions (i.e., 0 < a,P < 1) independent
of m and r.

Definition 4: An Fa,m network is a directed acyclic graph
with m inputs and a m outputs satisfying the following condi-
tion: For any number r (r < m) of paths already established
between the m inputs and the am outputs, any one of the
remaining idle inputs can be connected to at least 1-1
of the remaining idle outputs.

Lemma 1-(Bassalygo-Pinsker): An F a 3 k m network can be
constructed as shown in Fig. 1 by (i) cascading an Fa,m net-
work with an (a m , kam, a , @)-extensive graph, (i i) replicating
the cascade k times, and (iii) joining together the ith outputs of
the k cascades, 1 5 i 5 k a m , a = (a - l) /2a , p = (a+ l) /2a
and a + @ = 1.

We prove this lemma as the proof provides an insight into
the construction of an F a , k , n e t ~ o r k . ~

Proof: The lemma is proved by induction. The basis of
induction is a [(a t + t) / 2] -homogeneous bipartite graph with
t inputs and a t outputs. In this case, given r established paths,
each idle input can be connected to

5 1/2.

3The reader who is sufficiently familiar with [4] may skip Section 11-A.
41t is worth noting that this lemma was stated without a proof in [4].

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

) kam

am A/
Fig. 1 .
inputs and kam outputs.)

An iterative construction of Fa,km network. (The network has km

idle outputs since T 5 t- 1. Therefore, the first stage is an Fa,t
network. Now consider the Fa,km network in Fig. 1. Let the
Fa,m networks be numbered 1 ,2 , . . . , k , the (a m , kam, a , @)-
extensive graphs also be numbered 1 , 2, . . . , k and suppose that
there are T; established paths within the ith Fa,m network and
E:=, T; = T . Without loss ofgenerality, assume that there is at
least one idle input in the first Fa,m network so that 0 5 T I 5
m- 1 and 0 5 ~i 5 k m - 1. Let z denote this idle input.
By the definition of an Fa,+ network, z can be connected to
[""-,""1 2 outputs of the first Fa,m network,
which are also the inputs of the first (am, kam, a , @-extensive
graph. The (a m , kam, a , @)-extensive graph guarantees that
every aam = a" of its inputs are connected to at

[am-;+2 1 outputs of the first Fa,m network can be connected
to at least r kam$km] outputs of the first (am, kam, a , @)-
extensive graph. Since the number of established paths is at
most T , the idle input z can therefore be connected to at
least [kam$kml - T = rkamZr+l + -1 idle outputs.
Because 0 5 T 5 km - 1, it follows that z can be connected
to at least [(kamzr+l) l idle outputs. Therefore, by Definition

0
The following theorem gives a strictly nonblocking network

in terms of two fa,^ networks.
Theorem (Bassalygo-Pinsker): Let G be a network ob-

tained by tieing two fa,^ networks back-to-back as shown
in Fig. 2. G is an N-input strictly nonblocking network.

Proof: Consider the vertices in-between the two fa,^
networks. Given T connections between any T inputs and any T

outputs, each idle input on the left can reach at least aN;T+l of
these vertices, and each idle output on the right can also reach

at least one of these vertices can be reached by both the idle
input and idle output, and thus the statement follows. U

The two-stage construction of the Fa,km network in Fig. 1
can be applied iteratively to obtain an (s + 1) stage Fa,kst

least Pkam = = kam $ km of its outputs. So, the

4, the construction in Fig. 1 is an Fa,km network.

a N - r + 1 of these vertices. Since aN;r+l + > UN -T ,

0
1

Inputs

N.

Reverse
0
1

outputs

N-1

Fig. 2. A nonblocking network constructed with fa,^ networks.

network for any s 2 1. Stage 0 of an Fa,kat network consists
of k" [at + t/2]-homogeneous bipartite graphs, each with t
inputs and a t outputs. Stage 1 consists of k" (at, kat, a , @)-
extensive graphs, stage 2 consists of ICs-' (kat, k'at, a , @)-
extensive graphs, and, in general, stage i consists of ksPi+'
(/&'at, k i d , a, @)-extensive graphs, where a and @ are fixed
as in Lemma 1. To complete the design of the Fa,kst network,
Bassalygo and Pinsker showed that there exist bipartite 6-
homogeneous (ki-'at, kzat, a , P)-extensive graphs where 6
is given by

and H (.) is the binary entropy function, i.e., H (z) =

It is easy to see that the F a p t network constructed this
way has kSt inputs and akSt outputs. Furthermore, summing
the number of edges in the homogeneous graphs in stage 0 and
the extensive graphs in all the remaining stages, the number
of edges in the F a p t network is found to be

-z logz - (1 - z) l o g (l - z),O < 5 < 1.

S

kSt[(at + t)/21 + 6ki-latkS-Z+l

(3)

(4)

= N[(at + t)/21 - -(logt)N a6 + -NlogN U 6 (5) log IC log k
where N = tk".

Even though this result does not lead to an explicit con-
struction of an Fa,kst network (as it relies on the existence of
extensive graphs), it can be used to upper bound the number of
edges in such a network. In particular, Bassalygo and Pinsker
fixed k = 4, a = 50/17, t = 17 a = (a - 1)/2a = 0.33,
and P = (a + l) /2a = 0.67 to show that there exists a
((50)42-l, (50)4;, 0.33,0.67)-extensive graph for each i , 1 5
i 5 logk(N/17). Each of these is a 23-homogeneous bipartite
graph where 6 = 23 is worked out from (1). Substituting the
values of k , a, and t in (4) and noting that N = (17)4", the
number of edges in the F 5 0 / 1 7 , N network is determined as
134 * 17 * 4' + 1 1 5 0 ~ 4 ~ 1 = [67.65NlogNl.

B. Explicit Construction of Extensive Graphs

Bassalygo and Pinsker obtained an N-input strictly non-
blocking network with 136N log, N edges by cascading two

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

135 SHAO AND ORUC: EFFICIENT NONBLOCKING SWITCHING NETWORKS

m m

B 1
Fig. 3.
network has u t inputs and knt outputs.)

Explicit construction of an (m. k in . 0. j)-extensive graph. (The

F50/17,1v networks back-to-back, where each F50,17,1v net-
work consists of 1 + s = 1 +log,(N/17) stages, and hence the
two networks cascaded together have 2 f 2 log,(N/17) stages.
While this network has O(N1ogN) edges and O(1ogN)
stages, it is only an existential construction, since the extensive
graphs used in its construction were shown only to exist but
not explicitly con~tructed.~ In order to convert this network
to an explicit form, we first obtain an explicit construction
of Bassalygo and Pinsker's extensive graphs by using the
following lemma.

Lemma 2: Let G = (A . B , E) be a graph obtained by
joining together the ith inputs of k (m. d, c)-expanders, 1 5
i 5 m,, as shown in Fig. 3. G is an (m, km, a , P)-extensive
graph, where 0 5 a 5 1/2 and 0 5 p 5 a (1 + c(1 - a)).

Proofi Let X C A where 1x1 = am 5 m/2. The
inputs in X can be joined to (1 + c(1 - a)) lXI outputs of
each of the (7n,d,c)-expanders and thus can be joined to

This implies that the inputs in X can be joined to p k m
outputs of G for any [j 5 (~ (1 + c (l - a)) . Therefore, G
is an (m. km, a , P)-extensive graph with 0 5 a 5 l / 2 and

0
Remark: It is noted that the degree of each input of G

is kd (each input in A is connected to d outputs in each
(nr. d , c)-expander), and the degree of each output of G is d.
In Fig. 3, the lines that connect the inputs in A to the inputs of
the (m. d, e)-expanders do not represent edges; they are used
merely to identify the connections between the inputs in A
and the inputs of the expanders.

The main point of this lemma is that an (vi. km. a , p)-
extensive graph can be constructed by using k (v i , d , c) -
expanders. In the context of Lemma 1, this amounts to
replacing each of the (k z - l a t , k i d . a. p)-extensive graphs
in the ith stage of the F,.X network, by k (ki-lat ,d,c)-
expanders subject to the following conditions:
i) [I 5 t r (1 + c(1 - a)) , (from Lemma 2)

ii) cy 5 1/2 (from Definition 2)
iii) a + p = 1 (from Lemma 1)
Combining i) and iii) gives c 2 a. Recalling from
Lemma 1 that N = (a - 1)/(2a), ii) holds for any a > 1.
Hence the above three conditions amount to the inequality:

k(1 + ~ (l - N)) C Y ~ = ~ (1 + ~ (l - a))kvi outputs of G.

0 5 p 5 a(1 + c(1 - a)) .

'The constant factor in the .\-log A\- expression was subsequently reduced
to 53.4 in [2] by refining the notion of extensive graphs and choosing the
values of the parameters more judiciously.

2 (1 - 2 a) - - a 2 - 1 , where a > 1. By solving this inequality

for a, we obtain a 2 *. Hence, obtaining an (m,
km, e, %)-extensive giaph by Lemma 2 requires that
a 2 ELYLCZ, w e set amin = *.

Now returning to (5) , we note that the factor in front of the
N l o g N term is given by & or e since the extensive
graphs used in the Bassalygo-Pinsker network have degree
6 = d k . Since N l o g N is the highest order term in (5) , we
seek to minimize e N l o g N with respect to a, d and k ,
and subject to the constraint that a 2 F. An additional
constraint also imposed on a and k is that k"'at and k'aaf, 1 5
i 5 logk(N/t), be both squares since all explicit constructions
of (m, d , k)-expanders reported in the literature that we know
of have a square number of inputs. This implies that k and at
must both be squares. Under these conditions, it is obvious
that k = 4 minimizes g N l o g N . As for amln, Fig. 4
shows that its value increases as c decreases. While we do not
know of a close form relation between d and c, most explicit
constructions of (m, d. c)-expanders suggest that d increases
with increasing c as seen in Table I. Among these expanders,
Galil et al.'s (7n, 9.0.449)-expander with c = 0.412, d = 9
and a = 9.8 yields the minimum value for resulting
in 3 N log N = 352.8N log N edges. Using two copies of
Fg 8.N networks and invoking (5) with a = 9.8. d = 9, k = 4
and t = 5 then gives a nonblocking network with r54N +
7O5.6Nlog4(N/5)1 = r-765.18N + 352.8N log N] edges
and 2 + 2 log, (N / 5) = 2 + log(N / 5) stages. Table I1 compares
the edge-count and number of stages of this network with
previously known nonblocking networks. It is seen that the
edge-complexity of this network is about seven times higher
than the edge-complexity of Bassalygo-Pinsker's nonblocking
network construction, while they almost have the same depth.
However, as it is already noted, the latter construction is not
explicit, but it only points out the existence of a network with
the edge and depth complexities stated in the table. As for the
other entries in the table, the first three networks all have a
higher order edge-complexity than the network described here.
The only other nonblocking network construction listed in the
table with O (N log N) edges and O(1og N) depth is the multi-
Benes network [l], but the constant in its edge complexity
is much larger than the constant that appears in the edge
complexity of our network.6

111. SETTING AND ABOLISHING PATHS

In this section we present parallel algorithms to set a
path between any pair of idle inputs and idle outputs, and
abolish paths between any number of pairs of busy inputs and

6The constant 240 000 in the edge complexity of the multi-Benes network
is worked out from an informal remark in the second paragraph of the
second column in [I , p. 1561. The paper does not provide an expression
for either the edge complexity or the depth of the network. We inferred from
its description that it has 8d2LSlog ,V edges and 2(logAVL) + 1 stages
where d is the in-degree (and out-degree) of the switches in the network
and L is the loading factor. They together determine the routing time of the
network. The authors stated that choosing d < 10 and L < 300 leads to a
routing time of 100 log Z, and since no lower bound were given for d and
L , this implies that the requisite multi-Benes network could have as many as
8 * l o2 * 300 * AV lop, -1- = 240. OOOAYlog S edges.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

24

0
0 . 1 C 2

Fig. 4. Values of ami,, with respect to c.

TABLE I
VARIOUS EXPANDERS AND THEIR DEGREES AND EXPANSION COEFFICIENTS

4 9 ' 4 '

Expander Degree (4 ~~~~ (c) amin

Margulis [lo] 5 Not known Not known
Gabber & Galil [7] 5 (2 - &)/4 59.7

Gabber & Galil [7] I (2 - &)/2 29.9
Galil et al. [12] 9 0.412 9.8
Galil et al. [12] 13 0.465 8.7
C. Y. Lee [8] 33 0.868 4.8

TABLE I1
COST AND DEFTH OF VARIOUS NONBLOCKING NETWORKS

Network cost Depth
Clos-Cantor [5] N log"N, 2 < a 5 3 loga N , 2 < a 5 3
Cantor [5] O(Nlog2 N) 2 log(N + 2) - 1
fippenger Lin 191 O (N I O ~ ~ N) 2 log N + log log N) - 3
Multi-Bene5 [I] 240OOONlogN+O(N) 2(log300N) + 1
Bassalygo & Pinsker 53.4N log N + O (N)
P I

2 + log(N/17)

This paper's network 352.8Nlog N + O (N) 2 + log(N/5)

outputs in a Bassalygo-Pinsker network. In the description
of these algorithms, we will combine the extensive graphs
whose outputs are merged together in each stage of the
F 9 . 8 , ~ network into a single bipartite graph of degree dk as
illustrated in Fig. 5 for t = 5,a = 9.8, and IC = 4. This
simplifies the representation of the F 9 . 8 , ~ network without
altering its structure. We further illustrate the construction
of a nonblocking BassalygcbPinsker network in Fig. 6 for
N = 80, t = 5, a = 9.8, and IC = 4. This network comprises
three different types of graphs. The trapezoidal boxes marked
with B1 are 5-input, 49-output, 27-homogeneous graphs, the
rectangular boxes marked with Bz are merged blocks of four
(49, 196, 0.449, 0.55 1)-extensive graphs and the rectangular
boxes marked with B3 represent merged blocks of four (196,
784, 0.449, 0.55 1)-extensive graphs.

The single assignment routing problem for a Bassalygo-
Pinsker network includes two main tasks: setting paths and
abolishing paths. First, we formalize the path-setting problem.
Let x be an idle input which requests to be connected to
an idle output, say y. A free path between x and y (a path
between x and y comprising unused switching vertices) will
be established by traversing the left and right F a p networks
separately. That is, traversals from x to the idle outputs of the
left fa,^ network will be combined with the traversals from
y to the idle inputs of the right fa,^ network to determine the
free paths between z and y.

Fig. 5. Restructured F9,8,s*4~ network.

stage0- stage 1 (N stage 2 stage 2 .- stage 1 ,stage 0

Fig. 6. 80-input Bassalygo-Pinsker network.

The path abolishing problem (single routing assignment
version) for a Bassalygo-Pinsker network is concerned with
dismantling an established path between a busy input and
its busy output pair. The paths between inputs and outputs
must be abolished after the transactions between them are over
because leaving the edges on these paths busy invalidates the
nonblocking property of a Bassalygo Pinsker network (any
nonblocking network for that matter). We also note that the
paths that need to be abolished never overlap, and hence
they can be abolished in parallel without any additional time
penalty.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

SHAO AND ORUC: EFFICIENT NONBLOCKING SWITCHING NETWORKS 137

A. Path Representation

We will represent the paths between the inputs and outputs
of each F u , ~ network in terms of sequences of vertices
where each vertex identifies an (output, input) pair (i.e., a link
between two consecutive stages) of the network. This can be
viewed as collapsing the outputs of each stage with the inputs
of the succeeding stage without altering their original ordering.
We denote the ith vertex between the j - lth stage and j th
stage by (i , j) and call (i , j) the ID of this vertex, 0 5 i 5 U N
and 1 5 j 5 log,(N/t). In particular, (i , 0) . 0 5 i 5 U N - 1,
denote the input vertices and (i , 1 + log,(N/t)), 0 5 i 5
U N - 1, denote the output vertices.

A vertex in an F U p network is said to be occupied if it
falls on a path established between a busy input and a busy
output; it is called unoccupied otherwise. The status of the
vertices in an N-input fa,^ network with parameters a, t , d
and k will be represented by an U N x (2 + log,(N/t)) status
matrix P. where each entry P[i , j] is a triplet (p i , J , b i , j , Si,j),
0 5 i 5 aN, 0 5 j 5 1 + log,(N/t), and7
i) pi.j is a location to store the ID of one of the neighbors

of vertex (i , j) ;
ii) bi,j is a binary variable which represents the status of

vertex (i , j) (vertex (i , j) is occupied if bi,J = 1 and it
is unoccupied if bi,j = 0);

iii) Si,j is a dlc-element vector, where S,,j[r] contains the ID
of the rth successor of vertex (i , j) , 1 5 r 5 dk .

For an F u , ~ network with fixed parameters a, t , d and IC,
the entries in Si,j are fixed by the structure of the specific
extensive graph that is used to construct that network. The
value of bi,j is updated after each request to establish a path
or each request to abolish a path has been completed. Thus,
Si,j and b i , j , 0 5 i 5 U N , 0 5 j 5 1 + log,(N/t) collectively
represent the current state of the F u , ~ network.

B. Path-Setting Algorithm

Given an idle input (Iz1 0) of the left F u , ~ network and an
idle output (Iy, 0) of the right fa,^ network (equivalently, an
idle input-output pair of the entire network containing the left
and right fa,^ networks), the path-setting algorithm consists
of three phases: 1) path-claiming phase, 2) pivot-selection
phase, and 3) path-tracing phase. Before the execution of
these three phases, variables pi,j except ~ C L I = , O and ~ I , , o , in
all entries of the status matrices associated with the two F u , ~
networks are initialized with an invalid vertex ID.

I) Path Claiming Phase: During the path-claiming phase,
we mark all free paths between (Iz , 0) and (I,, 0) which are
vertex-disjoint with the already established paths in the two
F u , ~ networks by linking the vertices along the free paths
with the variables pi,j. This phase consists of (2 + log, (N / t))
steps for each fa,^ network (one step for each value of j) .
During the j th step, each vertex (i , j) , 0 5 i 5 UN-1 , with its
variable pi,j containing a valid vertex ID in stage j of the F u , ~
network broadcasts its ID to its dlc successors specified by
variable Si,j. Each vertex (i , j + l), 0 5 i 5 U N - 1, in stage

’Note that each Fa,,v network has only IV vertices in its input stage even
though matrix P allocates a column of aAV entries for these vertices. This is
done to simplify the notation in our discussion.

Stage j Stage j+l Stage j-1

. =(-l;l)
n t 1

Fig. 7. Demonstration of the j th iteration of path-claiming phase

j + 1 keeps only the ID of one of its predecessors, and stores
it in variable pi,j+l if its variable bi,j+l = 0 (an unoccupied
vertex) and discards all the ID’s from its predecessors if its
variable bi,j+l = 1 (an occupied vertex).

Fig. 7 illustrates these activities. Vertex (i , j) which has
received the ID from vertex (p , j - 1) in the last step broadcasts
its ID to all its successors, i.e., vertices (l , j + l), (lc , j + 1)
and (m , j + 1). These vertices then store in the same step,
this ID in pi, j+l, p k , j + l and pm,j+l if their corresponding
variables bi,j+l, b,,j+l, b,,j+l are equal to 0. We note that
vertex (n , j - 1) does not transmit its ID to vertex (i , j) as
indicated by the dashed line because its variable pL, ,J - l does
not contain a valid ID.

It follows that upon applying the path-claiming phase to
the left F u , ~ network, all its idle output vertices that have
free paths to the chosen idle input (Iz, 0) can be determined.
Likewise, upon applying the same procedure to the right fa,^
network, all its idle input vertices that have free paths to
the chosen idle output (I,,O) can also be determined. It is
noted that a vertex may have several successors as well as
several predecessors. The path-claiming procedure assigns one
predecessor to each vertex.

2) Pivot Selection Phase: We call each idle vertex common
to both the left and right F u , ~ networks a pivot vertex if it
can be reached by a path from both input (Iz, 0) and output
(Iy, 0) that is determined in the path claiming phase. That the
Bassalygo-Pinsker network is nonblocking ensures that there
exists at least one pivot vertex for any given idle input of the
left F u , ~ network and any given idle output of the right FUp
network. The pivot-selection phase uses a backward traversal
from pivot vertices on the input side of the right F U p network
toward its output (Iy, 0) to locate a free path. This traversal
takes 1 + logk(N/t) steps. More specifically, during step j ,
0 5 j 5 log,(N/t), the vertices in stage 1 + log,(N/t) - j
of the right F u , ~ network activated in the previous step send
their ID’s to their neighbors as specified in p i , ~ + l O g k (~ l ~ 1 - j .

The vertices in stage 1 + log,(N/t) - j - 1 that receive
any ID’S from stage 1 + log,(N/t) - j retain only one of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

these ID’S and then the same step is repeated between the
vertices in stage 1 + log,(N/t) - j - 1 and those in stage
1 + logk(N/t) - j - 2 and so on. This phase generates a free
path, (linked by variables pi , j) between output (I y , O) of the
right fa,^ network and one of the pivot vertices on its input
side.

3) Path Tracing Phase: Once the pivot-selection phase is
completed, all that remains to be done is to establish a free path
by tracing it back from output vertex (I,, 0) through the pivot
vertex in the center to the input vertex (I,, 0) of the combined
network. This path tracing phase takes 2 + log,(N / t) steps on
each of the left and right fa,^ networks. We start out with
the right fa,^ network and make the idle output (I,, 0) as the
only marked vertex. In the j th step, the marked vertex (i , j)
in stage j of the right fa,^ network sets variable bi, j = 1 to
indicate that vertex (2 , j) is occupied and transfers its ID to its
neighbor specified by variable pi,j so that the edge between
them is activated. The unique vertex in stage j + 1 which
receives this vertex ID becomes the marked vertex in stage
j + 1 for the following step. After 2 + log,(N/t) steps, a
particular pivot vertex in the center stage is marked. The same
process is then repeated for the left fa,^ network for another
2 + logk(N/t) steps starting with the chosen pivot vertex as
marked vertex. At the end of this phase, a path is formed
between (I,, 0) and (Iy, 0) and the request is served.

C. Path-Abolishing Algorithm

The algorithm to abolish a path is much simpler. Given
a busy input (I , ,O) of the left fa,^ network and a busy
output (I y r O) of the right fa,^ network, abolishing the
path between them only takes one phase which consists of
2 + logk(N/t) steps on each fa,^ network. At the beginning
of this algorithm, two vertices associated with input (I,, 0)
and input (Iy, 0) are marked. In the jth step, marked vertex
(2 , j) in stage j of the fa,^ network checks its dk successors
specified in the dk-element vector Si,j to see which one is
occupied. It then sends out its ID to the occupied successor in
stage j + 1. The successor vertex then becomes marked vertex
in stage j + 1 and resets its busy variable to 0 to indicate that it
is no longer occupied. The same step is now repeated in stage
j + 1 and so on until all the edges on the path are marked
free. At the end of this phase, the originally established path
is abolished and the request is completed. As stated before,
this algorithm can be extended to handle multiple requests at
no additional time penalty since the busy paths are all disjoint
and therefore can be abolished in parallel.

Iv. REALIZATION AND PERFORMANCE

In this section we discuss the implementation and perfor-
mance of the path-setting and path-abolishing algorithms on
parallel processors with three different topologies. The first
two of these implementations are derived directly from the
topology of the Bassalygo-Pinsker network and the third is
based on the perfect shuffle network.

A. Direct Realization
In this case, all phases of the routing algorithm associated

with the two fa,^ networks presented in the previous section

Left Fa.N Network Section Right F ~ . N Network Section --

Fig. 8. A BassalygePinsker (BP)-processor,

are mapped directly onto a parallel processor with 2 N +
2aN x log,(N/t) + U N processors that are interconnected
exactly the same way as the vertices are connected in the
Bassalygo-Pinsker network.8 This is illustrated in Fig. 8 for the
80-input Bassalygo-Pinsker network. The boxes marked with
B1, B2 and B3 represent the interprocessor communication
links that correspond to the links marked with the same labels
in Fig. 6. We shall refer to this parallel processor realization
as a BP-processor since its topology is patterned after the
Bassalygo-Pinsker network.

Each processor in a BP-processor except those associated
with the input vertices and output vertices has 2dk com-
munication links connecting it to its neighboring processors.
Since d and IC are constants, the number of communication
links for each processor is a constant and the total number of
communication links is

2dkN + 2dICaNlogk(N/t) = O(Nl0gN) . (6)

The path-setting algorithm described in the previous section
can be realized on the BP-processor using either a centralized
or a distributed processing scheme. In the centralized scheme,
we assume that a master control unit initiates the various
phases of the routing algorithm. To form a path, between an
idle input z and an idle output y, the master control unit acti-
vates the processor associated with input x and the processor
associated with output y. Each of these two processors then

8Note that each fa,^ network has only N input vertices. Thus the first
stage of the parallel processor for each fa,^ network consists of only N
processors and each of the remaining stages encompasses a N processors.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

SHAO AND ORUC: EFFICIENT NONBLOCKING SWITCHING NETWORKS 139

simultaneously initiates a path-claiming phase. Once the path-
claiming phase is completed, the processors in the center stage
invoke a pivot-selection phase. After this phase is completed,
the processor associated with output y then invokes a path
tracing phase. At the end of this phase, a path is formed
between input II: and output y.

In the distributed scheme, the request for a connection
between an idle input and an idle output arrives directly at the
processor associated with the idle input and this request must
be transmitted to the processor associated with the idle output.
This is accomplished by broadcasting the destination address
of the idle output via its processor to the processors associated
with all the idle outputs. The processor (associated with an
idle output) whose destination address matches the broadcast
address is then activated to initiate the three phases of the
path-setting algorithm. These three phases are also carried out
by the processor associated with the idle input. The rest of the
realization proceeds as in the centralized scheme.

It follows that all three phases of the path setting algorithm
can be completed in 4 * (2 + logk(N/ t)) = O(1ogN) steps
on a BP-processor under the centralized scheme and in 6 *
(2 + logk(N/ t)) = O(logN) steps under the distributed
scheme. Similarly, it can be shown that the path abolishing
algorithm can also be realized on the same parallel processor
in 2 + logk(N/ t) = O(logN) steps under the centralized
scheme and 3 * (2 + l o g k (N / t)) = O(1og N) steps under the
distributed scheme.

B. Indirect Realizations

The parallel processor realization just described can be
simplified by combining some of the processors together and
restructuring the communication links between them so as
to maintain the connectivities in the original topology of
the BP-processor. This can lead to a variety of realizations
with centralized routing schemes for the Bassalygo-Pinsker
network. One possibility is to combine the processors for
the right F a p network with the corresponding processors for
the left F,,N network (see Fig. 9(a)). This results in halving
the number of processors in the original topology. The path-
claiming phase of the routing algorithm can be executed on
this contracted BP-processor in a tandem fashion.

A more radical contraction is achieved by collapsing all
the processors into a single column of U N processors (all
processors in the same row are contracted into a single
processor), and restructuring the communication links so that
if any two processors have a direct communication link before
the contraction, they have a direct communication link after
the contraction as well. Fig. 9(b) depicts this contraction
graphically. Suppose that the U N processors in this realization
are numbered 0 .1 ,2 , . . . , aN - 1. Then row i of the status
matrices associated with the two fa,^ networks now resides
in processor i . After the contraction, each vertex in a stage
of the BP-processor is connected to dlc successors in the
succeeding stage. Therefore, each processor in the contracted
BP-processor has d k (2 + log,(N/t)) communication links
connecting it to the other processors. Thus, the contracted
BP-processor consists of O (N) processors and a total of
O (N log N) communication links.

Left Fa,N Network Section

b
Fig. 9.
same number in (a) are collapsed into a single processor in (b).

Two contractions of the BP-processor. Processors marked with the

Now consider the execution of the path-setting algorithm
on this contracted BP-processor. During the j th step of the
path-claiming phase, processor i, 0 5 i 5 U N - 1, with its
variable pi,j containing a valid ID broadcasts its ID to its dk
neighboring processors specified by variable S ~ , J . Processor
i, 1 5 i 5 U N stores any one of the ID’s it receives in
pi,j+l if bi,J+l = 0 and discards all the ID’s if its variable
b;,j+l = 1. After two path-claiming phases for the left and
right fa,^ networks, each processor knows whether or not it
is a pivot vertex. During the j th step of the pivot-selection
phase, the marked processor i transfers its ID to the processor
specified by variable pi,j and then updates the pi,., with
the ID it received during the last step. The processor which
receives any valid ID’s then stores only one of these ID’s
temporarily and becomes a marked processor for the next step.
After 1 + log,(N/t) steps, a unique free path linked pi,j is
found from one of the pivot vertices to the idle output pair.
Combining this path with the paths found in the left F,,N
network during the path-claiming phase, we trace back a free
path from the idle output pair to the idle input. In the j th step
of the path-tracing phase for right fa,^ network, the marked
processor i sets variable bi, j = 1 to indicate that vertex (z , j)
of the right F,,N network is occupied and transfers its ID to
the processor specified by variable pi,j so that the specified
processor can use this ID to activate the corresponding edge
in the right fa,^ network. The processor which receives this
vertex ID then becomes a marked processor for the next step.
The process for the left fa,^ network is the same as the
process of the right fa.^ network. At the end of this phase, a
free path is established and the request is completed.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

It follows from the ongoing discussion that the path-setting
algorithm can be implemented in 5 * ((2 + logk(N/t))) =
O(1ogN) steps on the contracted BP-processor. The path-
abolishing algorithm can similarly be implemented with a time
complexity of 2 * (2 + logk(N/t)) = O(1ogN) steps.

Now that the realization of the routing algorithm is reduced
to data broadcasting on a single column of O (N) processors,
the same algorithm can be realized on other parallel computers
consisting of O (N) processors. In particular, we can realize
this routing algorithm on a perfect shuffle processor using
the data broadcast algorithm of Nassimi and Sahni [l l] .
Consider a perfect shuffle processor with U N processors,
and suppose that processor P(i) contains an index register
W (i) and data register D(i) . Nassimi and Sahni described an
algorithm, called random access write (RAW) that broadcasts
the contents of D(i) in processor P(i) to processor P(W(i)) ,
0 5 i 5 U N - 1. If two or more processors attempt to
broadcast to the same processor, that is, if W(i1) = W(i2) =
... = W(i,) = i, then P (i) receives its data from P (j) ,
where j = Minllklr{ik}. This algorithm takes O(log2 N)
steps to execute on a perfect shuffle processor. The various
phases of the routing algorithms described in Section 3 can
be broken down into a sequence of steps each of which
amounts to executing the Nassimi and Sahni’s data broadcast
algorithm. To see this, consider the path-claiming phase of
the path-setting algorithm. In the BP-processor realization,
each processor within a stage broadcasts its own ID to its
dk successors in the next stage. On the receiving end, each
processor keeps only one of the ID’s that reach it. This
broadcasting of ID’s between the processors in consecutive
stages can be performed by iterating the Nassimi and Sahni’s
RAW algorithm dk times, where, during each iteration, all
active processors send their ID’s to one of their successors.
Since each iteration takes O(log2 N) steps and a total of
dk iterations are needed to complete the broadcast of the
ID’s for all active processors during each step of path-
claiming algorithm and since the entire algorithm encompasses
O(1og N) steps, the path-claiming phase can be completed in
O(log3N) steps on a perfect shuffle processor with O (N)
processors using Nassimi and Sahni’s algorithm. It should be
noted that this realization increases the time complexity from
O(1og N) to O(10g3 N) when compared to the fully-contracted
BP-processor, but it only requires O (N) communication links
as compared to O(N log N) communication links for the fully-
contracted BP-processor.

The steps in both direct and indirect realizations of our
algorithm involve broadcasting, updating vertex ID’s and
checking binary variables. In Section 111-A, we stated that a
switching vertex in a Bassalygo-Pinsker network will be given
or assigned a pair (i , j) as its ID. For an N-input Bassalygo-
Pinsker network this implies that the ID of each vertex takes
up O(1ogN) bits, and hence broadcasting and updating ID’s
would require 0 (log N) bit-steps. Fortunately, the bit-level
complexity of the steps in our algorithms can be reduced
to 0 (1) by noting that each vertex in Bassalygo-Pinsker
network has only 2dk neighbors and thus it suffices to use
2log(dk) = 0(1) bits to identify the neighbors of a vertex.
Therefore, broadcasting a vertex ID reduces to setting a single-

TABLE 111
PROCESSOR, TIME, AND LINK COMPLEXITIES OF VARIOUS PARALLEL

PROCESSOR REALIZATIONS OF THE ROUTING ALGORITHM

Realization No. of processors Execution time No. of Links

Contracted O(N) w o g NI O(N log N)
BP-processor

processor

BP-processor O(N log N) U(log N) O(N log N)

Perfect shuffle O (N) u(10g3 N) O (N)

bit flag and identifying the neighbor that sets a single-bit flag
reduces to encoding a log(&)-bit address which can be done in
O(log2(dk)) = 0(1) bit-steps. Recalling that the three phases
of the path-setting algorithm requires 4* (2+log4(N/5)) steps,
the total bit-level time complexity of this algorithm will be
z54 * [log(dk)12 * (2 + log,(N/t)) = 72 log N + 120.82 when
d = 9, k = 4 and t = 5.

V. CONCLUDING REMARKS
In this paper, we first described a strictly nonblocking

network with -765.18N + 352.8N log N crosspoints and
2 + log(N/5) depth by combining Bassalygo and Pinsker’s
implicit nonblocking network construction with Galil et al.’s
expanders. We then presented algorithms to set and abolish
paths on this network. For each new request each of these
algorithms takes O(1ogN) steps, where each step involves
broadcasting and checking a constant number of bits on
a parallel processor with O(N log N) processing elements
interconnected by a topology that is identical to the Bas-
salygo-Pinsker network. We also established that the same
algorithms can be realized on an N-processor computer with
O(N1ogN) communication links in O(1ogN) steps if the
processing elements are interconnected by a contracted Bas-
salygo-Pinsker network and in O(log3N) steps if they are
interconnected by a perfect shuffle network. These results are
summarized in Table 111. It is worth noting that the constants
hidden in the routing time complexities are reasonably small
(~ 7 2) . In contrast, the routing algorithm described in [I]
achieves a constant factor of 100 but at the expense of a
very large constant factor in the crosspoint complexity of the
nonblocking network used (see Table 11).

While these results are rewarding, it will be worthwhile to
further reduce the constant 352.8 in the crosspoint expression
of the nonblocking network described in the paper. This would
require new constructions of expanders with lower densities
and larger expansion coefficients. Another direction for further
research is to extend the path setting algorithm of this paper to
handle multiple connection assignments. Such assignments can
be handled by iteratively applying the algorithm given in this
paper, but this is likely to lead to excessive routing time when
the number of requests gets very large. These problems and
other related questions will be dealt with in detail elsewhere.

REFERENCES

[l] S. Arora, T. Leighton and B. Maggs, “On-line algorithms for path-
selection in a nonblocking network,” in Proc. ACM Symp. Theory of
Comput., 1990, pp. 149-158.

[2] L. Bassalygo, “Asymptotically optimal switching circuits,” Problems of
Inform. Transmission, vol. 17, pp. 206-21 1 , July-Sept. 1981.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

SHAO AND ORUC: EFFICIENT NONBLOCKING SWITCHING NETWORKS 141

[3] V. BeneS, Mathematical Theo? of Connecting Networks and Telephone
TrafJic. New York: Academic, 1965.

[4] L. Bassalygo and M. Pinsker, “Complexity of optimum nonblocking
switching without reconnections,” Problems of Inform. Transmission,
vol. 9, pp. 64-66, Jan.-Mar. 1974.

[5] D. G. Cantor, “On non-blocking switching networks,” Networks, vol. I ,
pp. 366-377, 1971.

[6] C. Clos, “A study of nonblocking switching networks,” Bell Sysr. Tech.
J., vol. 32, pp. 406425, Feb. 1953.

[7] 0. Gabber and Z. Galil, “Explicit constructions of linear sized super-
concentrators,” J. Comput. Syst. Sci., vol. 22, pp. 407420, 1981.

[8] C. Y. Lee, “Networks for fast efficient unicast and multicast communi-
cations,” Ph.D. Dissertation, Univ. Maryland, Dec. 1992.

[9] G. Lin and N. Pippenger, “Parallel algorithms for routing in nonblocking
networks,” in Proc. ACM Symp. Theory of Comput., 1991, pp. 272-277.

[IO] G. A. Margulis, “Explicit construction of concentrators,” Problems of
Inform. Transmission, vol. 9, pp. 325-332, 1973.

[1 I] D. Nassimi and S. Sahni, “Data broadcasting in SIMD computers,” IEEE
Trans. Comput., vol. C-30, pp. 101-107, Feb. 1981.

[I21 Z. Galil, N. Alon, and V. D. Milman, “Better expanders and supercon-
centrators,” J . Algorithms, vol. 8, pp. 337-347, 1987.

Fong-Chih Shao received the B Sc. degree in com-
munications engineenng from National Chiao-Tung
University, XingChu, Taiwan, in 1981, and the
MSc. degree in electncal engineering from National
Taiwan University, Taipei, in 1983

From May 1983 to June 1990, he served as an
assistant researcher at Nuclear Energy Council of
Executives, Yuan, Taiwan Since 1990, he has been
a Ph D. student in the Department of Electncal Engi-
neering, University of Maryland, College Park. His
research interests include computer communication

networks, parallel processing, computer architecture, computer algorithms,
and signal processing.

A. Yavuz Oruq (S’81-M’81-SM’92) received the
B.Sc degree in electrical engineenng from the Mid-
dle East Technical University, Ankara, Turkey, in
1976, the M Sc degree in electronics form the
University of Wales, Cardiff, U K , in 1978, and the
Ph D. degree from Syracuse University, Syracuse,
NY, in 1983

Since January 1988, he has been an associate
professor in the Department of Electncal Engineer-
ing, University of Maryland, College Park Prior
to joining the University of Maryland, he was on

faculty of the Department of Electncal, Computer, and Systems Engineering
at Rensselaer Polytechnic Institute, Troy, NY. His research interests include
parallel computer and communication systems

Dr. Om$ is a member of IEEE Communications, Computer, and Information
Theory Societies.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:22 from IEEE Xplore. Restrictions apply.

